3.65 \(\int \frac {\csc (c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx\)

Optimal. Leaf size=84 \[ \frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d} \]

[Out]

-2*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))/d/a^(1/2)+arctanh(1/2*cos(d*x+c)*a^(1/2)*2^(1/2)/(a+a*si
n(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2780, 2649, 206, 2773} \[ \frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(-2*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(Sqrt[a]*d) + (Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c +
d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(Sqrt[a]*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2780

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[
b/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] - Dist[d/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c +
d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rubi steps

\begin {align*} \int \frac {\csc (c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx &=\frac {\int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx}{a}-\int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx\\ &=-\frac {2 \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}+\frac {2 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{\sqrt {a} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.10, size = 128, normalized size = 1.52 \[ -\frac {\left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right ) \left ((2+2 i) (-1)^{3/4} \tanh ^{-1}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (\tan \left (\frac {1}{4} (c+d x)\right )-1\right )\right )+\log \left (-\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )+1\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )-\cos \left (\frac {1}{2} (c+d x)\right )+1\right )\right )}{d \sqrt {a (\sin (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-((((2 + 2*I)*(-1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])] + Log[1 + Cos[(c + d*x)/2] -
Sin[(c + d*x)/2]] - Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))/(d*Sq
rt[a*(1 + Sin[c + d*x])]))

________________________________________________________________________________________

fricas [B]  time = 0.48, size = 290, normalized size = 3.45 \[ \frac {\sqrt {2} \sqrt {a} \log \left (-\frac {\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + \frac {2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right ) + \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right )}{2 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*sqrt(a)*log(-(cos(d*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c) + 2*sqrt(2)*sqrt(a*sin(d*x + c) +
a)*(cos(d*x + c) - sin(d*x + c) + 1)/sqrt(a) + 3*cos(d*x + c) + 2)/(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d*
x + c) - cos(d*x + c) - 2)) + sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 + (cos(d*
x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c) + (a*cos(d*
x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin
(d*x + c) - cos(d*x + c) - 1)))/(a*d)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Warning, integration of abs or sign assumes cons
tant sign by intervals (correct if the argument is real):Check [abs(cos((d*t_nostep+c)/2-pi/4))]Discontinuitie
s at zeroes of cos((d*t_nostep+c)/2-pi/4) were not checkedWarning, integration of abs or sign assumes constant
 sign by intervals (correct if the argument is real):Check [abs(t_nostep+1)]Error: Bad Argument Type

________________________________________________________________________________________

maple [A]  time = 0.78, size = 96, normalized size = 1.14 \[ \frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (\sqrt {2}\, \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )-2 \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}}{\sqrt {a}}\right )\right )}{\sqrt {a}\, \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)/(a+a*sin(d*x+c))^(1/2),x)

[Out]

(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))-2*arctan
h((a-a*sin(d*x+c))^(1/2)/a^(1/2)))/a^(1/2)/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\csc \left (d x + c\right )}{\sqrt {a \sin \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(csc(d*x + c)/sqrt(a*sin(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sin \left (c+d\,x\right )\,\sqrt {a+a\,\sin \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(c + d*x)*(a + a*sin(c + d*x))^(1/2)),x)

[Out]

int(1/(sin(c + d*x)*(a + a*sin(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\csc {\left (c + d x \right )}}{\sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)/(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(csc(c + d*x)/sqrt(a*(sin(c + d*x) + 1)), x)

________________________________________________________________________________________